B. Math. (Hons.) Ist Year Analysis I Instructor - B. Sury First semestral Exam November 12, 2018

Attempt ANY FIVE questions among the six. Maximum Marks 50; each question carries 10 marks. In case of choices, only the option first attempted will be evaluated.

Q 1. (4+4+2 marks) (a) For the sequence

 $1.1, -1.01, 1.001, -1.0001, 1.00001, -1.000001, \cdots$

find the limit inferior, limit superior, infimum and the supremum. (b) If $\{a_n\}$ is a sequence of positive, real numbers such that the $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$, then prove that $\lim_{n\to\infty} a_n^{1/n} = l$. (c) By considering the sequence $1, a, ab, a^2b, a^2b^2, a^3b^2, a^3b^3, \cdots$ where a, b are distinct positive numbers, show that the converse of (b) is not true.

OR

Q 1. (7+3 marks) (i) Let a, b be real numbers with a > 0. Prove that the infimum of the set $\{an+b/n : n \in \mathbb{N}\}$ equals a+b if $b \leq 2a$ and equals am+b/m when b > 2a, where $m = min\{k \in \mathbb{N} : k \geq -1/2 + \sqrt{b/a + 1/4}\}$. (ii) For any real t, prove that $\lim_{n\to\infty} \frac{t^n}{n!} = 0$.

Q 2. (4+6 marks)

(a) Test the convergence of the series $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$.

(b) Let $\{a_n\}$ be a sequence of non-zero real numbers. Assume

$$\lim_{n \to \infty} n \left(\left| \frac{a_n}{a_{n+1}} \right| - 1 \right)$$

exists and is > 1. Prove that $\sum_{n} a_n$ converges absolutely.

\mathbf{OR}

Q 2. (5+5 marks) (a) If $\sum_{n\geq 1} a_n$ is an absolutely convergent series of real numbers, and σ is a bijection of the set of natural numbers to itself, prove that $\sum_{n\geq 1} a_{\sigma(n)}$ also converges to the same sum. (b)Prove that the series $\sum_{n\geq 0} \frac{1}{n!+(n+1)!}$ converges to 1. *Hint:* Use telescoping to show that $\sum_{n=0}^{N} \frac{1}{n!+(n+1)!} = 1 - \frac{1}{(N+2)!}$.

Q 3. (2+8 marks). Let S be a subset of \mathbb{R} . Define its interior S^0 . Prove that $(S^0)^c = \overline{S^c}$, where A^c denotes the complement of a set A.

OR

Q 3. (2+8 marks) Let S be a subset of \mathbb{R} . Define its closure \overline{S} . Prove that $(\overline{S})^c = (S^c)^0$.

Q 4. (6+4 marks) (a) For the function $f(x) = \frac{1}{e^{1/x}+1}$ defined for $x \neq 0$, determine whether the left hand and right hand limits exist at 0. Draw a rough graph of f(x). (b) Prove that a uniformly continuous function defined on a bounded subset of \mathbb{R} must be bounded.

OR

Q 4. (5+5 marks)

(a) Prove that there exists no continuous bijection f from (0,1) to [0,1].

(b) Prove that the only functions $g : \mathbb{R} \to \mathbb{R}$ satisfying $|g(x) - g(y)| \le |x - y|^2$ for all x, y are the constant functions.

- **Q 5.** (5+5 marks)
- (a) Compute $\lim_{x \to 0^+} \frac{\log(x)}{x}$.
- (b) Prove that the Taylor series of $e^x + e^{-x}$ converges to it for all real x.

OR

- **Q 5.** (5+5 marks)
- (a) Compute $\lim_{x \to \pi/2} \frac{tan(x)}{tan(3x)}$.

(b) Let f be a thrice differentiable function such that $f^{(3)}$ is continuous in a neighbourhood of 0. Suppose f(0) = f'(0) = f''(0) = 0 and $f^{(3)}(0) \neq 0$. Use Taylor's formula to deduce that f does not have a local extremum at 0.

Q 6. (5+5 marks)

(a) Let $f : [0,1] \to \mathbb{R}$ be thrice differentiable. Suppose f(0) = f(1) = f'(0) = f'(1) = 0. Prove that $f^{(3)}(t) = 0$ for some $t \in (0,1)$.

(b) Let f be an infinitely differentiable function defined on \mathbb{R} . Suppose f(1/n) = 0 for all natural numbers n. Prove that $f^{(k)}(0) = 0$ for all $k \ge 0$.

OR

Q 6. (5+5 marks)

(a) Consider $f(x) = 2x^4 + x^4 \sin(1/x)$ for $x \neq 0$; f(0) = 0. Prove that in each interval (-t, t), the derivative f' takes both positive and negative values.

(b) Suppose g is continuous on [0, 2] and differentiable on (0, 2). If g(0) = 0 and g(1) = g(2) = 1, prove that there exists $a \in (0, 2)$ such that g'(a) = 1/2.